Main Article Content

Florentina Yuni Arini
Muhammad Azzam Fadhlullah
Diva Satria
Afrilza Daffa Naryapramono
Tyto Rinandi
Fawwaz Haryolukito Pambudi

Abstract

Deteksi akun palsu di platform media sosial menjadi tantangan krusial dalam upaya mitigasi penyebaran informasi palsu dan penipuan daring. Penelitian ini mengusulkan pendekatan dengan menggabungkan model RuleFit dan Gaussian Process Classifier (GPC) melalui kombinasi feature engineering, di mana RuleFit digunakan untuk menghasilkan rule-based features yang kemudian dilatih dengan model GPC. Dataset penelitian terdiri dari 576 akun Instagram dengan berbagai fitur seperti karakteristik profil, pola aktivitas, dan interaksi pengguna yang kemudian diproses menggunakan One Hot Encoding dan standarisasi. Hasil eksperimen menunjukkan bahwa model RuleFit dan GPC mencapai performa tertinggi dengan akurasi 92,2%, precision 98%, dan recall 86%, secara signifikan mengungguli model individual RuleFit (akurasi 91,38%) dan model GPC (akurasi 90,52%). Penelitian ini memberikan kontribusi praktis berupa pengembangan sistem deteksi akun palsu yang lebih andal untuk meningkatkan keamanan platform media sosial.

Article Details

How to Cite
Arini, F. Y., Fadhlullah, M. A., Satria, D., Naryapramono, A. D., Rinandi, T., & Haryolukito Pambudi, F. (2025). Pendeteksi Akun Palsu di Instagram Menggunakan Model RuleFit dan Gaussian Process Classifier . Jurnal Sistem Dan Informatika (JSI), 19(1), 64-72. https://doi.org/10.30864/jsi.v19i1.677
Section
Articles

References

[1] Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. (2015). Fame for sale: Efficient detection of fake Twitter followers. Decision Support Systems, 80, 56-71.
[2] S. Lopez-Joya, J. A. Diaz-Garcia, M. D. Ruiz, and M. J. Martin-Bautista, ‘Bot Detection in Twitter: An Overview’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023. doi: 10.1007/978-3-031-42935-4_11.
[3] Refalia, Salsa, Boedi P. (2024). Pembuktian Akun Palsu terhadap Selebgram yang Diduga Melakukan Promosi Judi Online. Rewang Rencang : Jurnal Hukum Lex Generalis. 5(7), 1-14
[4] Kudugunta, S., & Ferrara, S. (2018). Deep Neural Networks for Bot Detection. arXiv preprint arXiv:1802.04289, 1-10.
[5] H2O.ai. (2023). RuleFit Algorithm. Retrieved from https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/rulefit.html
[6] Mahesa, A. A., Wisesty, U. N., & Adiwijaya. (2019). Klasifikasi Keadaan Mata berdasarkan Sinyal Electroencephalography Menggunakan Gaussian Process. e-Proceeding of Engineering, 6(2), 9069–9077.
[7] Ramadhan, J. A., Haniva, D. T., & Suharso, A. (2023). Systematic Literature Review Penggunaan Metodologi Pengembangan Sistem Informasi Waterfall, Agile, dan Hybrid. JIEET: Journal Information Engineering and Educational Technology, 7(1), 36–42. ISSN: 2549-869X.
[8] Kanamori, K. (2023). Learning Locally Interpretable Rule Ensemble. Artificial Intelligence Laboratory, Fujitsu Ltd.
[9] Rasmussen, C., E., & Williams, C., K., I. (2016). Gaussian Processes for Machine Learning. The MIT Press
[10] Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 916–954.
[11] Kanamori, K. (2023). Learning Locally Interpretable Rule Ensemble. arXiv preprint arXiv:2306.11481, 1–15.
[12] Ebner, L., Nalenz, M., ten Teije, A., van Harmelen, F., & Augustin, T. (2021). Expert RuleFit: Complementing Rule Ensembles with Expert Knowledge. Vrije Universiteit Amsterdam dan University of Munich.
[13] Luo, C., Li, S., Zhao, Q., Ou, Q., Huang, W., Ruan, G., Liang, S., Liu, L., Zhang, Y., & Li, H. (2022). RuleFit-Based Nomogram Using Inflammatory Indicators for Predicting Survival in Nasopharyngeal Carcinoma, a Bi-Center Study, Journal of Inflammation Research.
[14] C. E. Rasmussen dan C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
[15] Rodrigues, F., Pereira, F. C., & Ribeiro, B. (2014). Gaussian Process Classification and Active Learning with Multiple Annotators. Proceedings of the 31st International Conference on Machine Learning (ICML), JMLR: W&CP Volume 32, Beijing, China.
[16] Frohlich, B., Rodner, E., Kemmler, M., & Denzler, J. (2010). Efficient Gaussian Process Classification Using Random Decision Forests. Mathematical Theory Of Pattern Recognition.
[17] Apriliyani, E., & Salim, Y. (2022). Analisis Performa Metode Klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset. Indonesian Journal of Data and Science (IJODAS), 3(2), 47–54.
[18] Notra, J. (2023). Instagram_Detecting fake accounts. kaggle.
https://www.kaggle.com/datasets/jasvindernotra/instagram-detecting-fake-accounts
[19] Kaviya, P., Sudharsana, I., & Hariesh, B. B. C. (2025). Detecting deceptive identities: A machine learning approach to unveiling fake profiles on social media. SN Computer Science, 6(16).
[20] Alfiana, R. (2020). Penerapan Naïve Bayes Classifier Untuk Klasifikasi Akun Online Shop Instagram Yang Dicurigai Penipuan. Tugas Akhir. Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau.
[21] Herga, M. R. (n.d.). Implementasi Text Mining Sistem Klasifikasi dan Pencarian Naive Bayes Classifier.
Indexed and Journal List Title by: